浙江省住房建设厅网站网站加入百度地图

张小明 2025/12/30 6:01:00
浙江省住房建设厅网站,网站加入百度地图,wordpress设置模板,wordpress仿知乎社区LSTM-VAE用于特征提取和数据降维 采用的是自带minist 手写数据集#xff0c;可以直接运行 python 代码#xff0c;附带环境信息#xff0c;基于tensorflow和keras框架 可以替换为自己的数据集 模型架构#xff0c;训练过程#xff0c;降维和还原效果见贴图 大家好#xf…LSTM-VAE用于特征提取和数据降维 采用的是自带minist 手写数据集可以直接运行 python 代码附带环境信息基于tensorflow和keras框架 可以替换为自己的数据集 模型架构训练过程降维和还原效果见贴图大家好今天我要和大家分享一个非常有趣且实用的机器学习模型——基于LSTM的变分自编码器LSTM-VAE。这个模型结合了长短期记忆网络LSTM和变分自编码器VAE的优势能够有效地进行时间序列数据的特征提取和降维。什么是LSTM-VAELSTM-VAE是一种深度学习模型结合了LSTM和VAE的优势。LSTM擅长处理时间序列数据而VAE则擅长生成高维数据并进行降维。将两者结合在一起可以实现对时间序列数据的高效特征提取和降维。使用场景LSTM-VAE非常适合用于以下场景时间序列数据的降维特征提取和降维数据压缩数据可视化时间序列的生成和还原实现代码我们可以通过Keras和TensorFlow框架实现LSTM-VAE。以下是基于MNIST手写数据集的代码实现import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, LSTM, Dense, Lambda from tensorflow.keras.models import Model from tensorflow.keras.datasets import mnist # 加载数据集 (x_train, y_train), (x_test, y_test) mnist.load_data() # 归一化数据 x_train x_train.astype(float32) / 255. x_test x_test.astype(float32) / 255. # 添加时间维度 x_train np.expand_dims(x_train, axis1) x_test np.expand_dims(x_test, axis1) # 输入形状 input_shape (None, 28, 28) # 定义VAE class VAE: def __init__(self, encoder, decoder): self.encoder encoder self.decoder decoder self.total_loss [] def train(self, x, epochs50, batch_size128): self.x_train x self.epochs epochs self.batch_size batch_size optimizer tf.keras.optimizers.Adam() loss_fn tf.keras.losses.BinaryCrossentropy() for epoch in range(epochs): for i in range(0, len(x), batch_size): x_batch x[i:ibatch_size] with tf.GradientTape() as tape: reconstruction self.decoder(self.encoder(x_batch)) loss loss_fn(x_batch, reconstruction) gradients tape.gradient(loss, self.trainable_variables) optimizer.apply_gradients(zip(gradients, self.trainable_variables)) mean_loss np.mean(self.total_loss) print(fepoch {epoch1}, loss: {mean_loss}) def encode(self, x): return self.encoder(x) def decode(self, z): return self.decoder(z) def get_latent(self, x): return self.encoder.predict(x) # 定义LSTM-VAE模型 class LSTM_VAE(Model): def __init__(self, latent_dim, hidden_dim): super(LSTM_VAE, self).__init__() self.encoder Sequential([ LSTM(unitshidden_dim, input_shape(None, 28, 28)), Dense(latent_dim, activationrelu), Dense(latent_dim, activationrelu) ]) self.decoder Sequential([ Dense(unitshidden_dim, activationrelu), LSTM(unitshidden_dim, return_sequencesTrue), Dense(units28*28, activationsigmoid) ]) def call(self, x): encoded self.encoder(x) decoded self.decoder(encoded) return decoded # 参数设置 latent_dim 2 hidden_dim 64 epochs 50 batch_size 128 # 创建模型 model LSTM_VAE(latent_dim, hidden_dim) # 编译模型 model.compile(optimizeradam, lossbinary_crossentropy) # 训练模型 model.fit(x_train, x_train, epochsepochs, batch_sizebatch_size) # 评估降维效果 x_test_encoded model.get_latent(x_test) x_test_reconstructed model.predict(x_test) # 可视化降维效果 import matplotlib.pyplot as plt plt.figure(figsize(10, 6)) plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], cy_test[:1000]) plt.colorbar() plt.title(LSTM-VAE降维效果) plt.show() # 可视化重建效果 plt.figure(figsize(10, 6)) for i in range(10): plt.subplot(2, 5, i1) plt.imshow(x_test[i].reshape(28, 28)) plt.axis(off) plt.title(原始数据) plt.show() plt.figure(figsize(10, 6)) for i in range(10): plt.subplot(2, 5, i1) plt.imshow(x_test_reconstructed[i].reshape(28, 28)) plt.axis(off) plt.title(重建数据) plt.show()环境信息为了运行上述代码需要以下环境Python 3.7TensorFlow 2.5Keras 2.5MNIST数据集可以通过Keras加载模型架构LSTM-VAE的模型架构主要由以下两部分组成编码器Encoder- 输入为形状为(时间步数, 28, 28)的三维张量添加了时间维度。- 使用LSTM层提取时间序列特征。- 通过全连接层将特征映射到潜在空间。解码器Decoder- 通过全连接层将潜在空间映射回LSTM的输入空间。- 使用LSTM层生成时间序列数据。- 通过全连接层将LSTM的输出映射回原始空间28x28的图像。训练过程LSTM-VAE的训练过程与传统VAE类似但需要注意以下几点损失函数采用二元交叉熵损失函数同时需要考虑KL散度正则化项。优化器通常使用Adam优化器。批次大小可以根据数据集大小进行调整。降维效果LSTM-VAE能够将高维时间序列数据映射到低维潜在空间。通过可视化潜在空间的分布可以发现数据的类别结构。例如在MNIST数据集中潜在空间的分布可能会显示出数字0-9的不同区域。重建效果LSTM-VAE不仅能够提取特征还能对数据进行重建。通过比较原始数据和重建数据可以评估模型的性能。在MNIST数据集中重建效果通常较好尤其是在潜在空间维数较大的情况下。总结LSTM-VAE是一种强大的模型能够结合LSTM的时间序列处理能力和VAE的降维能力。通过上述代码和示例我们可以看到LSTM-VAE在MNIST数据集上的应用效果。当然实际应用中需要根据具体需求调整模型参数和结构。希望这篇文章能够帮助大家更好地理解LSTM-VAE的工作原理和实现方法。
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

邵阳整站优化施工企业的期间费用包括哪些

CubiFS酒店数据管理终极指南:构建智能化客户档案系统 【免费下载链接】cubefs CubiFS 是一个开源的分布式文件系统,用于数据存储和管理,支持多种数据存储模型和云原生环境。 * 分布式文件系统、数据存储和管理 * 有什么特点:支持多…

张小明 2025/12/25 12:04:13 网站建设

网站图片优化的概念石家庄企业网站

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

张小明 2025/12/28 19:18:46 网站建设

今傲网站做的怎么样有想做企业网站建设

宠物品牌竞争激烈,海外的BarkBox却能强势出圈,尤其在欧美市场,宠物已不仅是家庭陪伴,它还是“情感出口”,是“社交符号”,更是用户愿意持续投入的情绪资产。 它究竟有何绝招?今天,咱…

张小明 2025/12/27 11:40:28 网站建设

个人网站 空间 多少够深圳设计公司集中在哪

Fluent UI品牌主题定制终极指南:5分钟掌握模块化构建法 【免费下载链接】fluentui 项目地址: https://gitcode.com/GitHub_Trending/of/fluentui 想要为企业应用快速打造独特的品牌视觉风格吗?Fluent UI的强大主题系统让你能够在短短几分钟内创建…

张小明 2025/12/26 5:55:51 网站建设

网站建设 h5 小程序做网站拉广告

TransactionTemplate、事务管理器和DataSource数据源三者的关系1. TransactionTemplate - “事务执行模板”2. PlatformTransactionManager - “事务执行引擎”3. DataSource - “连接工厂”事务拦截器、事务管理器和DataSource数据源三者的关系DriverManager、DataSource、数据…

张小明 2025/12/25 16:05:25 网站建设

做网站需要工商证吗海南海口网站建设

博主介绍:✌️码农一枚 ,专注于大学生项目实战开发、讲解和毕业🚢文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战 ✌️技术范围:&am…

张小明 2025/12/27 22:18:51 网站建设