网站显示速度的代码是什么情况寻花问柳专做男人的网站
网站显示速度的代码是什么情况,寻花问柳专做男人的网站,广西互联网推广,免费广州网站开发维护使用Triton推理服务器部署微调后的模型#xff0c;并通过基准测试#xff08;如MMLU、GPQA#xff09;验证模型效果。
把这个过程拆解为模型转换、Triton部署、基准测试三个核心步骤#xff0c;给出可落地的操作指南和代码#xff0c;确保你能一步步完成部署和验证。
一、…使用Triton推理服务器部署微调后的模型并通过基准测试如MMLU、GPQA验证模型效果。把这个过程拆解为模型转换、Triton部署、基准测试三个核心步骤给出可落地的操作指南和代码确保你能一步步完成部署和验证。一、前置准备在开始部署和测试前需确保环境满足以下条件已安装Triton推理服务器推荐通过Docker部署避免环境冲突# 拉取Triton 24.09版本兼容TensorRT-LLMdocker pull nvcr.io/nvidia/tritonserver:24.09-trtllm-python-py3已安装依赖工具pipinstalltensorrt_llm0.10.0 lm-eval evaluate datasets requests已完成模型微调得到NeMo格式的模型文件如llama3.1_8b_lora_reasoning.nemo。二、核心步骤Triton部署基准测试步骤1将NeMo模型转换为Triton兼容格式Triton不直接支持NeMo格式需先将模型转换为TensorRT-LLMTRT-LLM格式NVIDIA优化的LLM推理格式再构建Triton模型仓库。1.1 转换NeMo模型为TRT-LLM格式importosfromnemo.export.trt_llmimportexport_trt_llm# 配置参数nemo_model_path./nemo_models/llama3.1_8b_lora_reasoning.nemo# 微调后的NeMo模型trt_llm_output_dir./trt_llm_model# TRT-LLM模型输出目录tensor_parallelism1# 单GPU部署设为1多GPU按实际调整precisionbf16# 与训练精度一致节省显存# 执行转换export_trt_llm(model_pathnemo_model_path,output_dirtrt_llm_output_dir,tensor_parallelismtensor_parallelism,precisionprecision,max_input_len8192,# 与训练时的max_seq_length一致max_output_len16384,# 与训练时的max_answer_length一致use_loraTrue,# 因为是LoRA微调需开启lora_dir./nemo_models/lora_weights# 单独保存的LoRA权重目录)1.2 构建Triton模型仓库Triton通过“模型仓库model repository”管理模型需按固定目录结构组织并编写配置文件。1.2.1 创建目录结构# 创建模型仓库根目录mkdir-p ./triton_model_repo/ensemble\./triton_model_repo/preprocess\./triton_model_repo/postprocess\./triton_model_repo/llama3.1_8b_lora# 复制TRT-LLM模型到对应目录cp-r ./trt_llm_model/* ./triton_model_repo/llama3.1_8b_lora/1/1.2.2 编写配置文件Triton模型仓库需3类配置文件预处理preprocess、模型推理llama3.1_8b_lora、后处理postprocess、集成ensemble。1预处理配置./triton_model_repo/preprocess/config.pbtxtname: preprocess platform: python max_batch_size: 8 input [ { name: TEXT_INPUT data_type: TYPE_STRING dims: [ -1 ] } ] output [ { name: TOKEN_IDS data_type: TYPE_INT32 dims: [ -1 ] }, { name: ATTENTION_MASK data_type: TYPE_INT32 dims: [ -1 ] } ] instance_group [ { kind: KIND_CPU } ] parameters { key: EXECUTION_ENV_PATH value: { string_value: /opt/tritonserver/python } } parameters { key: MODEL_PATH value: { string_value: meta-llama/Llama-3.1-8B-Instruct } }2模型推理配置./triton_model_repo/llama3.1_8b_lora/config.pbtxtname: llama3.1_8b_lora platform: tensorrt_llm max_batch_size: 8 input [ { name: input_ids data_type: TYPE_INT32 dims: [ -1 ] }, { name: attention_mask data_type: TYPE_INT32 dims: [ -1 ] } ] output [ { name: output_ids data_type: TYPE_INT32 dims: [ -1 ] } ] instance_group [ { kind: KIND_GPU gpus: [ 0 ] # 指定使用第0块GPU } ] parameters { key: tensor_parallelism value: { string_value: 1 } } parameters { key: max_beam_width value: { string_value: 1 } } parameters { key: max_tokens value: { string_value: 16384 } } parameters { key: temperature value: { string_value: 0.1 } }3后处理配置./triton_model_repo/postprocess/config.pbtxtname: postprocess platform: python max_batch_size: 8 input [ { name: OUTPUT_IDS data_type: TYPE_INT32 dims: [ -1 ] } ] output [ { name: TEXT_OUTPUT data_type: TYPE_STRING dims: [ -1 ] } ] instance_group [ { kind: KIND_CPU } ] parameters { key: MODEL_PATH value: { string_value: meta-llama/Llama-3.1-8B-Instruct } }4集成配置./triton_model_repo/ensemble/config.pbtxtname: ensemble platform: ensemble max_batch_size: 8 input [ { name: TEXT_INPUT data_type: TYPE_STRING dims: [ -1 ] } ] output [ { name: TEXT_OUTPUT data_type: TYPE_STRING dims: [ -1 ] } ] ensemble_scheduling { step [ { model_name: preprocess model_version: -1 input_map { key: TEXT_INPUT value: TEXT_INPUT } output_map { key: TOKEN_IDS value: TOKEN_IDS } output_map { key: ATTENTION_MASK value: ATTENTION_MASK } }, { model_name: llama3.1_8b_lora model_version: -1 input_map { key: input_ids value: TOKEN_IDS } input_map { key: attention_mask value: ATTENTION_MASK } output_map { key: output_ids value: OUTPUT_IDS } }, { model_name: postprocess model_version: -1 input_map { key: OUTPUT_IDS value: OUTPUT_IDS } output_map { key: TEXT_OUTPUT value: TEXT_OUTPUT } } ] }1.2.3 编写预处理/后处理Python脚本Triton的Python后端需要自定义脚本处理文本→token、token→文本的转换。预处理脚本./triton_model_repo/preprocess/1/model.pyimporttriton_python_backend_utilsaspb_utilsfromtransformersimportAutoTokenizerclassTritonPythonModel:definitialize(self,args):# 加载Llama 3.1 tokenizerself.tokenizerAutoTokenizer.from_pretrained(args[model_config][parameters][MODEL_PATH][string_value])self.tokenizer.pad_tokenself.tokenizer.eos_tokendefexecute(self,requests):responses[]forrequestinrequests:# 获取输入文本text_inputpb_utils.get_input_tensor_by_name(request,TEXT_INPUT).as_numpy()texttext_input[0].decode(utf-8)# 编码为tokenencodingself.tokenizer(text,return_tensorsnp,paddingmax_length,max_length8192,truncationTrue)input_idsencoding[input_ids]attention_maskencoding[attention_mask]# 构建输出张量token_ids_tensorpb_utils.Tensor(TOKEN_IDS,input_ids)attention_mask_tensorpb_utils.Tensor(ATTENTION_MASK,attention_mask)# 构建响应responsepb_utils.InferenceResponse(output_tensors[token_ids_tensor,attention_mask_tensor])responses.append(response)returnresponses后处理脚本./triton_model_repo/postprocess/1/model.pyimporttriton_python_backend_utilsaspb_utilsfromtransformersimportAutoTokenizerclassTritonPythonModel:definitialize(self,args):# 加载Llama 3.1 tokenizerself.tokenizerAutoTokenizer.from_pretrained(args[model_config][parameters][MODEL_PATH][string_value])defexecute(self,requests):responses[]forrequestinrequests:# 获取输出tokenoutput_idspb_utils.get_input_tensor_by_name(request,OUTPUT_IDS).as_numpy()# 解码为文本textself.tokenizer.decode(output_ids[0],skip_special_tokensTrue,clean_up_tokenization_spacesTrue)# 构建输出张量text_outputpb_utils.Tensor(TEXT_OUTPUT,np.array([text.encode(utf-8)],dtypenp.object_))# 构建响应responsepb_utils.InferenceResponse(output_tensors[text_output])responses.append(response)returnresponses步骤2启动Triton推理服务器通过Docker启动Triton挂载模型仓库和GPUdocker run --gpus all\--shm-size16g\--rm -it\-p8000:8000 -p8001:8001 -p8002:8002\-v$(pwd)/triton_model_repo:/models\nvcr.io/nvidia/tritonserver:24.09-trtllm-python-py3\tritonserver --model-repository/models --log-verbose1启动成功后会看到类似日志Triton Server started successfully此时服务器监听HTTP端口8000用于REST API调用gRPC端口8001指标端口8002步骤3基准测试验证模型基准测试分为单样本测试验证部署是否成功和批量基准测试MMLU/GPQA验证模型效果。3.1 单样本测试验证Triton部署编写简单脚本调用Triton接口验证模型能否正常生成回复importrequestsimportjsondeftriton_generate(prompt,max_tokens100,temperature0.1):调用Triton REST API生成回复# Triton服务器地址urlhttp://localhost:8000/v2/models/ensemble/infer# 构造请求数据data{inputs:[{name:TEXT_INPUT,shape:[1],datatype:BYTES,data:[prompt]}],parameters:{max_tokens:max_tokens,temperature:temperature,top_p:0.9}}# 发送请求headers{Content-Type:application/json}responserequests.post(url,datajson.dumps(data),headersheaders)# 解析响应ifresponse.status_code200:resultresponse.json()text_outputresult[outputs][0][data][0]returntext_outputelse:print(f请求失败{response.status_code}-{response.text})return# 测试推理能力if__name____main__:# 数学推理测试用例test_prompt Solve the problem step by step: A rectangular garden has a length of 15 meters and a width of 8 meters. If we want to build a fence around it, what is the total length of the fence needed? # 调用Triton生成回复outputtriton_generate(test_prompt,max_tokens200)print( 测试结果 )print(fPrompt:{test_prompt}\n)print(fModel Output:{output})运行脚本后若能输出清晰的解题步骤说明Triton部署成功。3.2 批量基准测试MMLU/GPQA使用主流的lm-evaluation-harness工具简称lm-eval运行标准化基准测试对比微调后模型与基础模型的效果。3.2.1 安装lm-evalgitclone https://github.com/EleutherAI/lm-evaluation-harness.gitcdlm-evaluation-harness pipinstall-e.3.2.2 编写自定义评估适配器lm-eval默认支持HuggingFace模型需编写适配器适配Triton部署的模型# 保存为triton_adapter.pyimportlm_evalimportrequestsimportjsonfromlm_eval.baseimportBaseLMclassTritonLM(BaseLM):def__init__(self,triton_urlhttp://localhost:8000/v2/models/ensemble/infer):self.triton_urltriton_url self.max_seq_len8192self.vocab_size128256# Llama 3.1 vocab sizedefloglikelihood(self,requests):计算对数似然用于选择题评分raiseNotImplementedError(可根据需求实现MMLU/GPQA主要用generate_until)defgenerate_until(self,requests):生成回复直到停止符适配基准测试responses[]forrequestinrequests:promptrequest[0]stoprequest[1][stop]# 调用Triton生成回复outputself._triton_generate(prompt,stopstop)responses.append((output,))returnresponsesdef_triton_generate(self,prompt,stopNone,max_tokens200,temperature0.0):封装Triton调用逻辑data{inputs:[{name:TEXT_INPUT,shape:[1],datatype:BYTES,data:[prompt]}],parameters:{max_tokens:max_tokens,temperature:temperature,stop:stopifstopelse[]}}headers{Content-Type:application/json}responserequests.post(self.triton_url,datajson.dumps(data),headersheaders)ifresponse.status_code200:returnresponse.json()[outputs][0][data][0]else:returnpropertydefeot_token_id(self):return128001# Llama 3.1 eos token idpropertydefmax_length(self):returnself.max_seq_lenpropertydefvocab_size(self):returnself.vocab_size# 注册自定义模型defload_triton_model():returnTritonLM()lm_eval.models.register_model(triton,load_triton_model)3.2.3 运行基准测试# 保存为run_benchmark.pyimportlm_evalimportjsonfromtriton_adapterimportload_triton_model# 注册模型lm_eval.models.register_model(triton,load_triton_model)# 配置测试任务tasks[mmlu,gpqa]# 可添加更多任务如gsm8k、math等batch_size4# 根据Triton服务器性能调整# 运行评估resultslm_eval.simple_evaluate(modeltriton,model_args,taskstasks,batch_sizebatch_size,devicecpu,# 评估逻辑在CPU推理在Triton GPUoutput_path./benchmark_results.json)# 解析并打印结果defprint_benchmark_results(results):print( 基准测试结果汇总 )fortaskintasks:task_keytaskiftaskinresults[results]elsef{task}-mainiftask_keyinresults[results]:# 不同任务的指标名不同MMLU是accGPQA是exact_matchmetricacciftaskmmluelseexact_matchscoreresults[results][task_key][metric]print(f{task.upper()}:{score*100:.2f}%)# 对比基础模型需提前运行基础模型的测试base_model_scores{mmlu:0.68,# 示例值替换为你的基础模型实际得分gpqa:0.45# 示例值}print(\n 与基础模型对比 )fortaskintasks:task_keytaskiftaskinresults[results]elsef{task}-mainiftask_keyinresults[results]:metricacciftaskmmluelseexact_matchfine_tuned_scoreresults[results][task_key][metric]base_scorebase_model_scores[task]improvement(fine_tuned_score-base_score)/base_score*100print(f{task.upper()}: 基础模型{base_score*100:.2f}% → 微调后{fine_tuned_score*100:.2f}%提升{improvement:.2f}%)# 执行并保存结果if__name____main__:print_benchmark_results(results)# 保存详细结果withopen(./benchmark_results.json,w)asf:json.dump(results,f,indent4)运行脚本python run_benchmark.py输出示例 基准测试结果汇总 MMLU: 72.50% GPQA: 49.80% 与基础模型对比 MMLU: 基础模型68.00% → 微调后72.50%提升6.62% GPQA: 基础模型45.00% → 微调后49.80%提升10.67%三、关键注意事项Triton配置优化若推理速度慢可调整max_batch_size、tensor_parallelism多GPU、precision如fp16基准测试适配不同任务的提示格式不同如MMLU是选择题GPQA是开放式问题需确保Triton的生成参数如stop token适配结果对比必须用相同的测试条件如温度、max_tokens运行基础模型和微调模型否则对比无意义错误排查Triton启动失败可检查日志--log-verbose1常见问题是模型路径错误、配置文件语法错误、GPU显存不足。总结Triton部署核心先将NeMo模型转换为TRT-LLM格式再按“预处理推理后处理”的结构构建Triton模型仓库通过Docker启动服务器单样本测试调用Triton的REST API验证模型能否正常生成回复是部署成功的基础基准测试核心通过lm-eval工具适配Triton模型运行MMLU/GPQA等标准化测试对比微调后与基础模型的得分验证推理能力提升效果。通过这一套流程你可以完整地完成模型部署并量化验证微调后的模型效果。